
Arrakis: The Operating System is the Control Plane
UW Technical Report UW-CSE-13-10-01, version 2.0, May 7, 2014

Simon Peter Jialin Li Irene Zhang Dan R.K. Ports
Doug Woos Arvind Krishnamurthy Thomas Anderson

University of Washington

Timothy Roscoe
ETH Zurich

Abstract
Recent device hardware trends enable a new approach
to the design of network server operating systems. In a
traditional operating system, the kernel mediates access
to device hardware by server applications, to enforce pro-
cess isolation as well as network and disk security. We
have designed and implemented a new operating system,
Arrakis, that splits the traditional role of the kernel in
two. Applications have direct access to virtualized I/O
devices, allowing most I/O operations to skip the ker-
nel entirely, while the kernel is re-engineered to provide
network and disk protection without kernel mediation of
every operation. We describe the hardware and software
changes needed to take advantage of this new abstraction,
and we illustrate its power by showing 2-5x end-to-end
latency and 9x throughput improvements for a popular
persistent NoSQL store relative to a well-tuned Linux
implementation.

1 Introduction
Reducing the overhead of the operating system process ab-
straction has been a longstanding goal of systems design.
This issue has become particularly salient with modern
client-server computing. Many servers spend much of
their time executing operating system code: delivering
interrupts, demultiplexing and copying network packets,
and maintaining filesystem meta-data. Server applications
often perform very simple functions, such as key-value
table lookup and storage, yet traverse the OS kernel mul-
tiple times per client request. Further, the combination of
high speed Ethernet and low latency persistent memories
are widening the gap between what is possible running in
kernel mode and what is available to applications.

These trends have led to a long line of research aimed
at optimizing kernel code paths for various use cases:
eliminating redundant copies in the kernel [42], reduc-
ing the overhead for large numbers of connections [26],
protocol specialization [40], resource containers [9, 36],
direct transfers between disk and network buffers [42],
interrupt steering [43], hardware TCP acceleration, etc.
Much of this has been adopted in mainline commercial
OSes, and yet it has been a losing battle: we show that the

Linux network and file system stacks have latency and
throughput many times worse than that achieved by the
raw hardware.

Twenty years ago, researchers proposed streamlining
packet handling for parallel computing over a network of
workstations by mapping the network hardware directly
into user space [18, 21, 50]. Although commercially un-
successful at the time, the virtualization market has now
led hardware vendors to revive the idea [6, 35, 44], and
also extend it to disks [48, 49].

This paper explores the OS implications of removing
the kernel from the data path for nearly all I/O operations.
We argue that doing this must provide applications with
the same security model as traditional designs; it is easy
to get good performance by extending the trusted com-
puting base to include application code, e.g., by allowing
applications unfiltered direct access to the network or the
disk.

We demonstrate that operating system protection is not
contradictory with high performance. For our prototype
implementation, a client request to the Redis persistent
NoSQL store has 2x better read latency, 5x better write la-
tency, and 9x better write throughput compared to Linux.

We make three specific contributions:

• We give an architecture for the division of labor be-
tween the device hardware, kernel, and runtime for
direct network and disk I/O by unprivileged processes
(§3).
• We implement prototypes of our model as a set of

modifications to the open source Barrelfish operating
system, running on commercially available multi-core
computers and I/O device hardware (§3.6).
• We use these prototypes to quantify the potential bene-

fits of user-level I/O for several widely used network
services, including a key-value store, a NoSQL store,
an IP-layer middlebox, and an HTTP load balancer (§4).
We show that significant gains are possible in terms of
both latency and scalability, relative to Linux, in many
cases without modifying the application programming
interface; additional gains are possible by changing the
POSIX API (§4.3).

1

App

Core Core Core Kernel

NIC

Userspace

Incoming Q's Outgoing Q's

App

Figure 1: Linux networking architecture and workflow.

2 Background
We first give a detailed breakdown of the OS and applica-
tion overheads in network and storage operations today,
followed by a discussion of current hardware technologies
that support user-level networking and I/O virtualization.

To analyze the sources of overhead, we record times-
tamps at various stages of kernel and user-space pro-
cessing. Our experiments are conducted on a six ma-
chine cluster consisting of 6-core Intel Xeon E5-2430
(Sandy Bridge) systems at 2.2 GHz clock frequency exe-
cuting Ubuntu Linux 13.04, with 1.5 MB L2 cache and
15 MB L3 cache, 4 GB of memory, an Intel X520 (82599-
based) 10Gb Ethernet adapter, and an Intel MegaRAID
RS3DC040 RAID controller with 1GB cache of flash-
backed DRAM, exposing a 100GB Intel DC S3700 series
SSD as one logical disk. All machines are connected to a
10Gb Dell PowerConnect 8024F Ethernet switch. One sys-
tem (the server) executes the application under scrutiny,
while the others act as clients.

2.1 Networking Stack Overheads

Consider a UDP echo server implemented as a Linux pro-
cess. The server performs recvmsg and sendmsg calls in
a loop, with no application-level processing, so it stresses
packet processing in the OS. Figure 1 depicts the typical
workflow for such an application. As Table 1 shows, op-
erating system overhead for packet processing falls into
four main categories.

• Network stack processing at the hardware, IP, and
UDP layers.
• Scheduler overhead: waking up a process (if neces-

sary), selecting it to run, and context switching to it.
• Kernel crossings: from kernel to user space and back.
• Copying of packet data: from the kernel to a user buffer

on receive, and back on send.

Of the total 3.36 µs (see Table 1) spent processing each
packet in Linux, nearly 70% is spent in the network stack.
This work is mostly software demultiplexing and security
checks. The kernel must validate the header of incoming
packets, and must perform security checks on arguments
provided by the application when it sends a packet.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

ext2 64B

ext2 1KB

ext3 64B

ext3 1KB

ext4 64B

ext4 1KB

btrfs 64B

btrfs 1KB

S
y
s
te

m
 c

a
ll

d
u
ra

ti
o
n
 [
u
s
]

write
fsync

Figure 2: Overhead in µs of various Linux filesystem implemen-
tations, when conducting small, persistent writes.

Scheduler overhead depends significantly on whether
the receiving process is currently running. If it is, only
5% of processing time is spent in the scheduler; if it is
not, the time to context-switch to the server process from
the idle process adds an extra 2.2 µs and a further 0.6 µs
slowdown in other parts of the network stack.

Cache and lock contention issues on multicore systems
add further overhead and are exacerbated by the fact that
incoming messages can be delivered on different queues
by the network card, causing them to be processed by
different CPU cores—which may not be the same as the
cores on which the user-level process is scheduled, as
depicted in Figure 1. Advanced hardware support such
as accelerated receive flow steering (aRFS) [4] aims to
mitigate this cost, but these solutions themselves impose
non-trivial setup costs [43].

By leveraging hardware support to remove kernel me-
diation from the data plane, Arrakis can eliminate certain
categories of overhead entirely, and minimize the effect
of others. Table 1 also shows the corresponding overhead
for two variants of Arrakis. Arrakis eliminates scheduling
and kernel crossing overhead entirely, because packets are
delivered directly to user space. Network stack processing
is still required, of course, but it is greatly simplified: it is
no longer necessary to demultiplex packets for different
applications, and the user-level network stack need not
validate parameters provided by the user as extensively as
a kernel implementation must. Because each application
has a separate network stack, and packets are delivered to
cores where the application is running, lock contention
and cache effects are reduced.

In Arrakis’ network stack, the time to copy packet
data to and from user-provided buffers dominates the
processing cost, a consequence of the mismatch between
the POSIX interface (Arrakis/P) and NIC packet queues.
Arriving data is first placed by the network hardware into a
network buffer and then copied into the location specified
by the POSIX read call. Data to be transmitted is moved
into a buffer that can be placed in the network hardware
queue; the POSIX write can then return, allowing the user
memory to be reused before the data is sent. Although

2

Linux Arrakis

Receiver running CPU idle POSIX interface Native interface

Network stack in 1.26 (37.6%) 1.24 (20.0%) 0.32 (22.3%) 0.21 (55.3%)
out 1.05 (31.3%) 1.42 (22.9%) 0.27 (18.7%) 0.17 (44.7%)

Scheduler 0.17 (5.0%) 2.40 (38.8%) - -

Copy in 0.24 (7.1%) 0.25 (4.0%) 0.27 (18.7%) -
out 0.44 (13.2%) 0.55 (8.9%) 0.58 (40.3%) -

Kernel crossing return 0.10 (2.9%) 0.20 (3.3%) - -
syscall 0.10 (2.9%) 0.13 (2.1%) - -

Total 3.36 (σ = 0.66) 6.19 (σ = 0.82) 1.44 (σ < 0.01) 0.38 (σ < 0.01)

Table 1: Sources of packet processing overhead in Linux and Arrakis. All times are averages over 1,000 samples, given in µs (and
standard deviation for totals). Arrakis currently supports polling only. Thus, the CPU idle case does not apply.

researchers have investigated ways to eliminate this copy
from kernel network stacks [42], as Table 1 shows, most
of the overhead for a kernel-resident network stack is
elsewhere. Once the overhead of traversing the kernel is
removed, there is an opportunity to rethink the POSIX
API for more streamlined networking. In addition to a
POSIX compatible interface, Arrakis provides a native
interface (Arrakis/N) which supports true zero-copy I/O.

2.2 Storage Stack Overheads

To illustrate the overhead of today’s OS storage stacks,
we conduct an experiment, where we execute small write
operations immediately followed by an fsync1 system
call in a tight loop of 10,000 iterations, measuring each
operation’s execution latency. We store the file system on
a RAM disk, so the measured latencies represent purely
CPU overhead.

The overheads shown in Figure 2 stem from data copy-
ing between user and kernel space, parameter and access
control checks, block and inode allocation, virtualization
(the VFS layer), snapshot maintenance (btrfs), as well as
metadata updates, in many cases via a journal[49].

Considering both the near-ubiquity of caching RAID
controllers and NVRAM-based storage adapters, OS stor-
age stack overhead becomes a major factor. We measured
average write latency to our RAID cache to be 25 µs and
PCIe-attached flash storage adapters, like Fusion-IO’s
ioDrive2, report hardware access latencies as low as 15
µs [23]. In comparison, OS storage stack overheads are
high, between 40% and 2x for the extended filesystems,
depending on journal use, and up to 5x for btrfs.

2.3 Application Overheads

What do these I/O stack overheads mean to operation
latencies within a typical datacenter application? Consider
the Redis [17] NoSQL store. Redis persists each write via

1We also tried fdatasync, with negligible difference in latency.

an operational log (called append-only file)2 and serves
reads from an in-memory data structure.

To serve a read, Redis performs a series of operations:
First, epoll is called to await data for reading, followed
by recv to receive a request. After receiving, the (tex-
tual) request is parsed and the key looked-up in memory.
Once found, a response is prepared and then, after epoll
is called again to check whether the socket is ready, sent
to the client via send. For writes, Redis additionally
marshals the operation into log format, writes the log
and waits for persistence (via the fsync call) before re-
sponding. Redis also spends minor amounts of time in
accounting, access checks, replication (disabled in this
experiment), and connection handling (Other row in Ta-
ble 2).

Table 2 shows that a total of 76% of the latency in
an average read hit on Linux is due to socket operations.
In Arrakis, we reduce socket operation latency by 68%.
Similarly, 90% of the latency of an average write on Linux
is due to I/O operations. In Arrakis we reduce I/O latency
by 82%.

We can also see that Arrakis reduces some application-
level overheads. This is due to the better cache behavior
of the user-level I/O stacks and the control/data plane
separation evading all kernel crossings. Arrakis’ write
latency is still dominated by storage access latency (25µs
in our system). We expect the latency to improve as faster
storage devices appear on the market.

2.4 Hardware I/O Virtualization

Single-Root I/O Virtualization (SR-IOV) [35] is a hard-
ware technology intended to support high-speed I/O for
multiple virtual machines sharing a single physical ma-
chine. An SR-IOV-capable I/O adapter appears on the
PCIe interconnect as a single “physical function” (PCI
parlance for a device) which can in turn dynamically cre-
ate additional “virtual functions”. Each of these resembles

2Redis also supports snapshot persistence because of the high per-
operation overhead imposed by Linux.

3

Read hit Durable write

Linux Arrakis/P Linux Arrakis/P
epoll() 2.42 (27.91%) 1.12 (27.52%) 2.64 (1.62%) 1.49 (4.73%)
recv() 0.98 (11.30%) 0.29 (7.13%) 1.55 (0.95%) 0.66 (2.09%)
send() 3.17 (36.56%) 0.71 (17.44%) 5.06 (3.10%) 0.33 (1.05%)
Parse input 0.85 (9.80%) 0.66 (16.22%) 2.34 (1.43%) 1.19 (3.78%)
Lookup/set key 0.10 (1.15%) 0.10 (2.46%) 1.03 (0.63%) 0.43 (1.36%)
Prepare response 0.60 (6.92%) 0.64 (15.72%) 0.59 (0.36%) 0.10 (0.32%)
Log marshaling - - 3.64 (2.23%) 2.43 (7.71%)
Write log - - 6.33 (3.88%) 0.10 (0.32%)
Persistence - - 137.84 (84.49%) 24.26 (76.99%)
Other 0.55 (6.34%) 0.46 (11.30%) 2.12 (1.30%) 0.52 (1.65%)

Total 8.67 (σ = 2.55) 4.07 (σ = 0.44) 163.14 (σ = 13.68) 31.51 (σ = 1.91)

Table 2: Overheads in the Redis NoSQL store for memory reads (hits) and durable writes (legend in Table 1).

a PCI device, which can be directly mapped into a differ-
ent virtual machine and access can be protected via an
IOMMU (e.g. Intel’s VT-d [31]). To the guest operating
system, each virtual function can be programmed as if
it was a regular physical device, with a normal device
driver and an unchanged I/O stack. Hypervisor software
with access to the physical hardware (such as Domain 0
in a Xen [10] installation) creates and deletes these virtual
functions, and configures filters in the SR-IOV adapter
to demultiplex hardware operations to different virtual
functions and therefore different guest operating systems.

In Arrakis, we use SR-IOV, the IOMMU, and sup-
porting adapters to provide direct application-level ac-
cess to I/O devices. This is a modern implementation
of an idea which was implemented twenty years ago
with U-Net [50], but generalized to flash storage and Eth-
ernet network adapters. To make user-level I/O stacks
tractable, we need a hardware-independent device model
and API that captures the important features of SR-IOV
adapters [28, 37, 38, 47]; a hardware-specific device
driver matches our API to the specifics of the particular
device. We discuss this model in the next section, along
with potential improvements to the existing hardware to
better support user-level I/O.

Remote Direct Memory Access (RDMA) is another
popular model for user-level networking[44]. RDMA
gives applications the ability to read from or write to
a region of virtual memory on a remote machine directly
from user-space, bypassing the operating system kernel
on both sides. The intended use case is for a parallel
program to be able to directly read and modify its data
structures even when they are stored on remote machines.

While RDMA provides the performance benefits of
user-level networking to parallel applications, it is chal-
lenging to apply the model to a broader class of client-
server applications [20]. Most importantly, RDMA is
point-to-point. Each participant receives an authenticator
providing it permission to read/write a particular region

of memory. Since clients in client-server computing are
not mutually trusted, the hardware would need to keep
a separate region of memory for each active connection.
Therefore we do not RDMA operations here.
3 Design and Implementation
Arrakis has the following design goals:

• Minimize kernel involvement for data-plane opera-
tions: Arrakis is designed to limit or remove kernel me-
diation for most I/O operations. I/O requests are routed
to and from the application’s address space without
requiring kernel involvement and without sacrificing
security and isolation properties.
• Transparency to the application programmer: Ar-

rakis is designed to significantly improve performance
without requiring modifications to applications written
to the POSIX API. Additional performance gains are
possible if the developer can modify the application to
take advantage of the Arrakis native interface.
• Appropriate OS/hardware abstractions: Arrakis’s

abstractions should be sufficiently flexible to efficiently
support a broad range of I/O patterns, scale well on
multi-core systems, and support application require-
ments for locality and load balancing.

In the rest of this section, we show how we achieve
these goals in the Arrakis architecture. We describe an
ideal set of hardware facilities that should be present to
take full advantage of this architecture, and we detail
the design of the control plane and data plane interfaces
that we provide to the application programmer. Finally,
we describe our implementation of Arrakis based on the
Barrelfish operating system.

3.1 Architecture Overview

Arrakis targets I/O hardware with support for virtualiza-
tion, and Figure 3 shows the overall architecture. In this
paper, we focus on hardware that can present multiple
instances of itself to the operating system and the ap-

4

App Control
Plane

Ke
rn

el

VNIC

U
se

rs
pa

ceApp

libos libos

VNIC

SwitchNIC
VSAVSA

Storage Controller

VSIC VSIC

VSA

Figure 3: Arrakis architecture. The storage controller maps
VSAs to physical storage.

plications running on the node. For each of these virtu-
alized device instances, the underlying physical device
provides unique memory mapped register spaces, trans-
mit/receive/command queues, and interrupts. The device
exports a management interface that is accessible from
the control plane in order to create or destroy virtual-
ized device instances, associate individual instances with
network flows or storage areas, and allocate shared re-
sources to the different instances. Applications conduct
I/O through a virtualized device instance without requir-
ing kernel intervention. In order to perform these opera-
tions, applications rely on a user-level I/O stack, which is
implemented as a library OS. The user-level I/O stack can
be tailored to the application as it can assume exclusive
access to a virtualized device instance and also avoid per-
forming demultiplexing operations and security checks
that are already implemented in the hardware.

The user naming and protection model is unchanged.
A global naming system is provided by the control plane.
This is especially important for sharing stored data. Ap-
plications implement their own storage, while the control
plane manages naming and coarse-grain allocation, by
associating each application with the directories and files
it manages. Other applications can still read those files by
indirecting through the kernel, which hands the directory
or read request to the appropriate application.

3.2 Hardware Model

A key element of our work is to develop a hardware-
independent layer for virtualized I/O—that is, a device
model providing an “ideal” set of hardware features. This
device model captures the functionality required to imple-
ment in hardware the data plane operations of a traditional
kernel. Our model resembles what is already provided by
some hardware I/O adapters; we hope it will provide guid-
ance as to what is needed to support secure user-level
networking and storage.

In particular, we assume our network devices provide
support for virtualization by presenting themselves as
multiple virtual network interface cards (VNICs) and that

they can also multiplex/demultiplex packets based on
complex filter expressions, directly to queues that can be
managed entirely in user space without the need for kernel
intervention. Similarly, each storage controller exposes
multiple virtual storage interface controllers (VSICs) in
our model. Each VSIC provides independent storage com-
mand queues (e.g., of SCSI or ATA format) which are
multiplexed by the hardware.

Associated with each such virtual interface card (VIC)
are queues and rate limiters. VNICs also provide filters
and VSICs provide virtual storage areas. We discuss these
components below.

Queues: Each VIC contains multiple pairs of DMA
queues for user-space send and receive. The exact form
of these VIC queues could depend on the specifics of
the I/O interface card. For example, it could support a
scatter/gather interface to aggregate multiple physically-
disjoint memory regions into a single data transfer. For
NICs, it could also optionally support hardware checksum
offload and TCP segmentation facilities. These features
enable I/O to be handled more efficiently by performing
additional work in hardware. In such cases, the Arrakis
system offloads operations and thus further reduces the
software I/O overhead.

Transmit and receive filters: A transmit filter is a predi-
cate on network packet header fields which the hardware
will use to determine whether to send the packet or discard
it (and possibly signaling an error either to the application
or the OS). The transmit filter prevents applications from
spoofing information such as IP addresses and VLAN
tags and thus eliminates the need for kernel mediation to
enforce these security checks. It can also be used to limit
an application to only communicate with a pre-selected
set of nodes, e.g., for information flow control.

A receive filter is a similar predicate that determines
which packets received from the network will be deliv-
ered to a VNIC and to a specific queue associated with the
target VNIC. The demultiplexing of packets to separate
VNICs allows for isolation of flows and the further demul-
tiplexing into queues allows for efficient load-balancing
through techniques such as receive side scaling. Installa-
tion of transmit and receive filters are privileged opera-
tions performed via the kernel control plane.

Virtual storage areas: Storage controllers need to pro-
vide an interface via their physical function to create and
delete virtual storage areas (VSAs), map them to extents
of physical drives, and associate them with VSICs. An
application can store multiple sub-directories and files in
a single VSA, providing precise control over multi-object
serialization constraints. A VSA can be dynamically as-
signed multiple contiguous physical storage extents. On
flash, an extent can be an erasure block; on disk, it may
be a cylinder group or portion of a cylinder.

5

Each VSIC may support only one VSA, but in some
cases support for multiple different VSAs can have bene-
fits. For example, parallel writes to different storage de-
vices, such as multiple flash chips, improves performance
[41]. Existing VSAs may also be extended and shrunk.
VSAs are the storage equivalent of NIC filters and ensure
access protection without kernel mediation. VSAs can
be implemented in hardware via page tables or lists of
extents.

Bandwidth allocators: This includes support for re-
source allocation mechanisms such as rate limiters and
pacing/traffic shaping of I/O. Once a frame has been re-
moved from a transmit rate-limited or paced queue, the
next time another frame could be fetched from that queue
is regulated by the rate limits and the inter-packet pacing
controls associated with the queue. Installation of these
controls are also privileged operations.

In addition, we assume that the I/O device driver sup-
ports an introspection interface that allows the control
plane to query for resource limits (e.g., the number of
queues) and check for the availability of hardware sup-
port for I/O processing (e.g., checksum calculations and
segmentation).

Network cards that support SR-IOV have the key ele-
ments of this model: they allow the creation of multiple
VNICs that each may have multiple send and receive
queues, and support at least rudimentary transmit and re-
ceive filters. Not all NICs provide the rich filtering seman-
tics we desire; for example, the Intel 82599 can filter only
based on source or destination MAC addresses and VLAN
tags, not arbitrary predicates on header fields. However,
this capability is within reach: some network cards (e.g.,
Solarflare 10Gb adapters) can already filter packets on all
header fields, and the hardware support required for more
general VNIC transmit and receive filtering is closely re-
lated to that used for techniques like Receive-Side Scaling,
which is ubiquitous in high-performance network cards.

Storage controllers have individual bits of the tech-
nology needed to provide the interface we describe. For
example, RAID adapters have a translation layer that is
able to provide virtual disks out of physical disk extents
and SSDs use a flash translation layer for wear-leveling.
SCSI host-bus adapters support SR-IOV technology for
virtualization [37, 38], which allows them to expose mul-
tiple VSICs, and the NVMe standard proposes multiple
command queues for scalability [32]. Only the required
protection mechanism is missing. We anticipate VSAs to
be allocated in large chunks (gigabytes) and thus hard-
ware protection mechanisms can be coarse-grained and
light-weight.

Finally, the number of hardware-supported VICs might
be limited. The 82599 [28] and SAS3008 [38] support 64.
This number is adequate with respect to the capabilities of

the rest of the hardware (e.g., the number of CPU cores)
and we expect it to rise. The PCI working group has
already ratified an addendum to SR-IOV that increases
the supported number of virtual functions to 2048. To
run more applications than the hardware supports, we can
simply multiplex the remainder in the traditional way via
the kernel to the physical function. Of course, only the
first applications would benefit from kernel bypass and
this set of high-priority applications would need to be
configured by the system administrator.

3.3 Control Plane Interface

The interface between an application and the Arrakis
control plane is used to request resources from the system
and direct I/O flows to and from user programs. The
key abstractions presented by this interface are VICs,
doorbells, filters, VSAs, and rate specifiers.

An application can create and delete VICs (subject
to resource limitations or policies imposed by Arrakis),
and also associate doorbells with particular events on
particular VICs. A doorbell is an IPC communication end-
point used to notify the application that an event (such as
a packet arrival or I/O completion) has occurred, and we
discuss them further in the next section.

Filters have a type (transmit or receive) and a predi-
cate which corresponds to a convex sub-volume of the
packet header space (for example, obtained with a set
of mask-and-compare operations). Filters can be used to
specify ranges of IP addresses and port numbers that can
be associated with valid packets transmitted/received at
each VNIC. Filters are a better abstraction for our pur-
poses than a conventional connection identifier (such as
a TCP/IP 5-tuple), since they can encode a wider vari-
ety of the communication patterns, as well as subsuming
traditional port allocation and interface specification.

For example, in the “map” phase of a MapReduce job
we would like the application to send to, and receive from,
an entire class of machines using the same communication
end-point, but nevertheless isolate the data comprising
the shuffle from other data. Furthermore, filters as subsets
of header space are flexible enough to support a range of
application settings while being more straightforward to
implement in hardware than mechanisms such as longest
prefix matching.

As a second example, web servers with a high rate
of incoming TCP connections can run into scalability
problems processing connection requests [43]. In Arrakis,
a single filter can safely express both a listening socket
and all subsequent connections to that socket, allowing
server-side TCP connection establishment to avoid kernel
mediation.

Applications create a filter with a control plane op-
eration. In practice this is usually wrapped in a higher-
level call create_filter(flags, peerlist, servicelist) = fil-

6

ter which sacrifices generality in the aid of simplicity
in the common case. It returns a new filter ID filter;
flags specifies the filter direction (transmit or receive)
and whether the filter refers to the Ethernet, IP, TCP, or
UDP level. peerlist is a list of accepted communication
peers specified according to the filter type, and servicelist
contains a list of accepted service addresses (e.g., port
numbers) for the filter. Wildcards are permitted.

A filter ID is essentially a capability: it confers au-
thority to send or receive packets satisfying its predicate.
A filter ID can subsequently be assigned to a particular
queue on a VNIC and causes Arrakis to configure the
underlying hardware accordingly; thereafter that queue
can be used to send or receive the corresponding packets.

Similarly, a VSA is acquired via an ac-
quire_vsa(name) = VSA call. VSAs are given a
global name, such that they can be found again when an
application is restarted. The returned VSA is a capability
that allows applications access to the corresponding VSA.
The control plane stores capabilities and their association.
If a non-existent VSA is acquired, its size is initially zero,
but can be resized via the resize_vsa(VSA, size) call.

As long as physical storage space is available, the in-
terface allows creating new VSAs and extending existing
ones. Deleting and resizing an existing VSA is always
possible. Shrink and delete operations permanently delete
the data contained in the VSA, by overwriting with zeroes,
which can be done in the background by the control plane.
Resizing might be done in units of a fixed size if more
efficient given the hardware.

For each VSA, the control plane maintains a mapping
of virtual storage blocks to physical ones and programs
the hardware accordingly. As long as the storage hardware
allows mappings to be made at a block or extent gran-
ularity, a regular physical memory allocation algorithm
can be used without having to worry about fragmentation.
Maintaining head locality for hard disks is outside of the
scope of our work. As we envision VSAs to be modi-
fied infrequently and by large amounts, the overhead of
these operations does not significantly affect application
performance.

Finally, a rate specifier can also be assigned to a queue,
either to throttle incoming traffic (in the network receive
case) or pace outgoing packets and I/O requests. Rate
specifiers and filters associated with a VIC queue can be
updated dynamically, but all such updates require media-
tion from the Arrakis control plane.

3.4 Network Data Plane Interface

In Arrakis, applications send and receive network pack-
ets by directly communicating with hardware. The data
plane interface is therefore implemented in an applica-
tion library. The Arrakis library provides two interfaces
to applications. We describe the native Arrakis interface,

which departs slightly from the POSIX standard to sup-
port true zero-copy I/O; Arrakis also provides a POSIX
compatibility layer that supports unmodified applications.

Applications send and receive packets on queues,
which have previously been assigned filters as described
above. While filters can include IP, TCP, and UDP field
predicates, Arrakis does not require the hardware to per-
form protocol processing, only multiplexing. In our imple-
mentation, Arrakis provides a user-space network stack
above the data plane interface.

Interaction with the network hardware is designed for
maximizing performance from the perspective of both
latency and throughput. We maintain a clean separation
between three aspects of packet transmission and recep-
tion.

Firstly, packets are transferred asynchronously between
the network and main memory using conventional DMA
techniques using rings of packet buffer descriptors.

Secondly, the application transfers ownership of a
transmit packet to the network hardware by enqueu-
ing a chain of buffers onto the hardware descriptor
rings, and acquires a received packet by the reverse pro-
cess. This is performed by two VNIC driver functions.
send_packet(queue, packet_array) sends a packet on a
queue; the packet is specified by the scatter-gather array
packet_array, and must conform to a filter already asso-
ciated with the queue. receive_packet(queue) = packet
receives a packet from a queue and returns a pointer to it.
Both operations are asynchronous. packet_done(packet)
returns ownership of a received packet to the VNIC.

For optimal performance, the Arrakis stack would inter-
act with the hardware queues not through these calls but
directly via compiler-generated, optimized code tailored
to the NIC descriptor format. However, the implementa-
tion we report on in this paper uses function calls to the
driver.

Thirdly, we handle asynchronous notification of events
using doorbells associated with queues. Doorbells are de-
livered directly from hardware to user programs via hard-
ware virtualized interrupts when applications are running
and via the control plane to invoke the scheduler when
applications are not running, in which case the higher
latency is tolerable. Doorbells are exposed to Arrakis pro-
grams via regular event delivery mechanisms (e.g., a file
descriptor event) and are fully integrated with existing I/O
multiplexing interfaces (e.g., select). They are useful
both to notify an application of general availability of
packets in receive queues, as well as a lightweight notifi-
cation mechanism for I/O completion and the reception
of packets in high-priority queues.

This design results in a protocol stack that decou-
ples hardware from software as much as possible using
the descriptor rings as a buffer, maximizing throughput
and minimizing overhead under high packet rates, yield-

7

ing low latency. On top of this native interface, Arrakis
provides POSIX-compatible sockets. This compatibility
layer allows Arrakis to support unmodified Linux applica-
tions. However, we show that performance gains can be
achieved by using the asynchronous native interface.

3.5 Storage Data Plane Interface

The low-level storage API provides a set of commands
to asynchronously read, write, and flush hardware caches
at any offset and of arbitrary size (subject to block gran-
ularity) in a VSA via a command queue in the associ-
ated VSIC. To do so, the caller provides an array of
virtual memory ranges (address and size) in RAM to
be read/written, the VSA identifier, queue number, and
matching array of ranges (offset and size) within the VSA.
The API implementation makes sure to enqueue the cor-
responding commands to the VSIC, coalescing and re-
ordering commands if this makes sense to the underlying
media. I/O completion events are reported using door-
bells. On top of this, a POSIX-compliant file system is
provided.

We have also designed a library of persistent data struc-
tures, TenaciousD, to take advantage of low-latency stor-
age devices. Data structures have the benefit that their stor-
age characteristics can be tailored to their usage model,
for improved efficiency, as opposed to a simple read/write
interface provided by filesystems. Their drawback is a
lack of backwards-compatibility to the POSIX API. Our
design goals for persistent data structures are that (1)
operations are immediately persistent, (2) the structure
is robust versus crash failures, and (3) operations have
minimal latency.

We have designed a persistent log according to these
goals and modified Redis to use it (cf. §4.4). The persis-
tent log incorporates metadata directly in the data struc-
ture, which allows for early allocation and eliminates any
generic metadata book-keeping service, such as a journal.
Metadata is allocated once a new log entry is requested in
RAM and can thus be persisted while the application fills
the entry. The in-memory layout of the log is as stored,
eliminating any marshaling that applications typically do
to represent the durable version of their data. Further-
more, the log is optimized for linear access and efficiently
prefetches entries upon read.

The log API includes operations to open and close a
log, create log entries (for metadata allocation), append
them to the log (for persistence), iterate through the log
(for reading), and trim the log from the beginning. The
API is asynchronous: an append operation returns imme-
diately and a callback can be registered to be called once
it is persistent. This allows us to mask remaining write
latencies, e.g., by allowing Redis to optimistically prepare
a network response to the client, while the log entry is
persisted.

Log entries are allocated in multiples of the storage
layer’s block size and contain a header that denotes the
true (byte-granularity) size of the entry and points to the
offset of the next entry in a VSA. This allows entries to
be written directly from memory, without additional mar-
shaling. At the end of each entry is a marker that is used
to determine whether an entry was fully written (empty
VSA space is always zero). By issuing appropriate cache
flush commands to the storage layer, the log ensures that
markers are written after the rest of the entry (cf. [16]).

The log itself is identified by a header at the beginning
of the VSA that contains an identifier, a version number,
the number of log entries, the block size of the storage
device, and an offset to the end of the log within the VSA.
The log repairs a corrupted or outdated header lazily in
the background upon opening, by looking for additional,
complete entries from the purported end of the log.

3.6 Implementation

The Arrakis operating system is based upon a fork of the
Barrelfish [11] multicore OS code base [1]. We added
33,786 lines of code to the Barrelfish code base in order
to implement Arrakis. Barrelfish lends itself well to our
approach, as it already provides a library OS. We could
have also chosen to base Arrakis on the Xen [10] hyper-
visor or the Intel Data Plane Development Kit (DPDK)
[29] running on Linux; both provide user-level access to
the network interface via hardware virtualization. How-
ever, implementing a library OS from scratch on top of
a monolithic OS would have been more time consuming
than extending the Barrelfish library OS.

We extended Barrelfish with support for SR-IOV, which
required modifying the existing PCI device manager to
recognize and handle SR-IOV extended PCI capabilities.
We implemented a physical function driver for the Intel
82599 10G Ethernet Adapter [28] that can initialize and
manage a number of virtual functions. We also imple-
mented a virtual function driver for the 82599, including
support for extended Message Signaled Interrupts (MSI-
X), which are used to deliver per-VNIC doorbell events
to applications. Finally, we implemented drivers for the
Intel IOMMU [31] and the Intel RS3 family of RAID
controllers [30]. In addition—to support our benchmark
applications—we added several POSIX APIs that were
not implemented in the Barrelfish code base, such as
POSIX threads, many functions of the POSIX sockets
API, as well as the epoll interface found in Linux to al-
low scalable polling of a large number of file descriptors.
Barrelfish already supports standalone user-mode device
drivers, akin to those found in microkernels. We created
shared library versions of the drivers, which we link to
each application.

We have developed our own user-level network stack,
Arranet. Arranet is a shared library that interfaces directly

8

with the virtual function device driver and provides the
POSIX sockets API and Arrakis’s native API to the ap-
plication. Arranet is based in part on the low-level packet
processing code of the lwIP network stack [39]. It has
identical capabilities to lwIP, but supports hardware of-
fload of layer 3 and 4 checksum operations and does
not require any synchronization points or serialization
of packet operations. We have also developed our own
storage API layer, as described in §3.5 and our library of
persistent data structures, TenaciousD.

3.7 Limitations and Future Work

Due to the limited filtering support of the 82599 NIC,
our implementation uses a different MAC address for
each VNIC, which we use to direct flows to applications
and then do more fine-grain filtering in software, within
applications. The availability of more general-purpose
filters would eliminate this software overhead.

Arranet does not yet support interrupts from the NIC,
and all network packet processing is performed by polling
the network interface. This can have adverse effects on
packet processing latency if network packets arrive when
the network-handling application is not currently active.
In such cases, Arranet does not notice the arrival and does
not allow the application to act immediately. In many set-
tings, server applications receive a continuous stream of
requests, using interrupts only as a fallback. Our bench-
mark applications have this flavor, and so their results are
not impacted by this limitation. Nevertheless, support for
network interrupts is important future work.

Our implementation of the virtual function driver does
not currently support the “transmit descriptor head write-
back” feature of the 82599, which reduces the number
of PCI bus transactions necessary for transmit operations.
We expect to see a 5% network performance improvement
from adding this support.

The RS3 RAID controller we used in our experiments
does not support SR-IOV or VSAs. Hence, we use its
physical function, which provides one hardware queue,
and we map a VSA to each logical disk provided by the
controller. We still use the IOMMU for protected access
to application virtual memory, but the controller does
not protect access to logical disks based on capabilities.
Our experience with the 82599 suggests that hardware
I/O virtualization incurs negligible performance overhead
versus direct access to the physical function. We expect
this to be similar for storage controllers.

4 Evaluation
We evaluate Arrakis on three cloud application workloads:
A typical, read-heavy load pattern observed in many large
deployments of the memcached distributed object caching
system, a write-heavy load pattern to the Redis persistent
NoSQL store, and a workload consisting of a large num-

ber of individual client HTTP requests made to a farm of
web servers via an HTTP load balancer and an IP-layer
middlebox. We also examine the system under maximum
load in a series of microbenchmaks and analyze perfor-
mance crosstalk among multiple networked applications.
Using these experiments, we seek to answer the following
questions:

• What are the major contributors to performance over-
head in Arrakis and how do they compare to those of
Linux (presented in §2)?
• Does Arrakis provide better latency and throughput for

real-world cloud applications? How does the through-
put scale with the number of CPU cores for these work-
loads?
• Can Arrakis retain the benefits of user-level applica-

tion execution and kernel enforcement, while providing
high-performance packet-level network IO?
• What additional performance gains are possible by de-

parting from the POSIX interface?

We compare the performance of the following OS con-
figurations: Linux kernel version 3.8 (Ubuntu version
13.04), Arrakis using the POSIX interface (Arrakis/P),
and Arrakis using its native interface (Arrakis/N).

We tuned Linux network performance by installing the
latest ixgbe device driver version 3.17.3 and disabling
receive side scaling (RSS) when applications execute on
only one processor. RSS spreads packets over several
NIC receive queues, but incurs needless coherence over-
head on a single core. The changes yield a throughput
improvement of 10% over non-tuned Linux. We use the
kernel-shipped MegaRAID driver version 6.600.18.00-
rc1.

Linux uses a number of performance-enhancing fea-
tures of the network hardware, which Arrakis does not
currently support. Among these features is the use of di-
rect processor cache access by the NIC, TCP and UDP
segmentation offload, large receive offload, and network
packet header splitting. All of these features can be im-
plemented in Arrakis; thus, our performance comparison
is weighted in favor of Linux.

4.1 Server-side Packet Processing Performance

We load the UDP echo benchmark from §2 on the server
and use all other machines in the cluster as load generators.
The load generators generate 1,024 byte UDP packets at a
fixed rate and record the rate at which their echoes arrive.
Each experiment exposes the server to maximum load for
20 seconds.

Shown in Table 1, compared to Linux, Arrakis elimi-
nates two system calls, software demultiplexing overhead,
socket buffer locks, and security checks. In Arrakis/N, we
additionally eliminate two socket buffer copies. Arrakis/P
incurs a total server-side overhead of 1.44 us, 57% less

9

 0

 200

 400

 600

 800

 1000

 1200

Linux
Arrakis/P

Arrakis/N
Driver

T
h
ro

u
g
h
p
u
t
[K

 p
a
c
k
e
ts

 /
 s

]

Figure 4: Average UDP echo throughput for packets with 1024
byte payload. The top y-axis value shows theoretical maximum
throughput on the 10G network. Error bars show min/max mea-
sured over 5 repeats of the experiment.

than Linux. Arrakis/N is able to reduce this overhead to
0.38 µs.

Figure 4 shows the average throughput attained by each
system. Arrakis/P achieves 2.3x the throughput of Linux.
By departing from POSIX, Arrakis/N achieves 3.4x the
throughput of Linux. Smaller payload sizes showed pro-
portional improvement in throughput on both systems. To
gauge how close Arrakis comes to the maximum possible
throughput, we embedded a minimal echo server directly
into the NIC device driver, eliminating any remaining API
overhead and achieving 85% of the theoretical line rate
(1.17M pps).

4.2 Memcached Key-Value Store

Memcached is an in-memory key-value store used by
many cloud applications. It incurs a processing overhead
of 2–3 µs for an average object fetch request, comparable
to the overhead of OS kernel network processing.

We benchmark memcached version 1.4.15 by sending
it requests at a constant rate via its binary UDP protocol,
using a tool similar to the popular memslap [2] bench-
mark. We configure a workload pattern of 90% fetch and
10% store requests on a pre-generated range of 128 dif-
ferent keys of a fixed size of 64 bytes and a value size of
1,024 bytes, in line with real cloud deployments [8].

To measure network stack scalability for multiple cores,
we vary the number of memcached server processes. Each
server process executes independently on its own port
number, such that measurements are not impacted by scal-
ability bottlenecks in memcached itself, and we distribute
load equally among the available memcached instances.
On Linux, memcached processes share the kernel-level
network stack. On Arrakis, each process obtains its own
VNIC with an independent set of packet queues, each
controlled by an independent instance of Arranet.

Figure 5 shows that memcached on Arrakis/P achieves
1.7x the throughput of Linux on one core, and attains
near line-rate at 4 CPU cores. The slightly lower through-
put on all 6 cores is due to contention with Barrelfish
system management processes [11]. By contrast, Linux

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 6

T
h

ro
u

g
h
p

u
t

[K
 t
ra

n
s
a

c
ti
o
n
s
 /

 s
]

Number of CPU cores

Linux threads
Linux procs

Arrakis/P

Figure 5: Average memcached transaction throughput and scal-
ability. The top y-axis value shows the maximum throughput
achievable in this experiment at 10Gb/s.

throughput nearly plateaus beyond two cores.
The throughput of a single memcached instance using

threads instead of processes shows no noticeable differ-
ence to the multi-process scenario. This is not surprising
as memcached is optimized to scale well.

To conclude, the separation of network stack and appli-
cation in Linux provides only limited information about
the application’s packet processing and poses difficulty
assigning threads to CPU cores with packet data hot in
their cache. The resulting cache misses and socket lock
contention are responsible for much of the Linux over-
head. In Arrakis, the application is in control of the whole
packet processing flow: assignment of packets to packet
queues, packet queues to cores, and finally the scheduling
of its own threads on these cores. The network stack thus
does not need to acquire any locks, and packet data is
always available in the right processor cache.

Memcached is also an excellent example of the com-
munication endpoint abstraction: we can create hardware
filters to allow packet reception and transmission only
between the memcached server and a designated list of
client machines that are part of the cloud application. In
the Linux case, we have to filter connections in the appli-
cation.

4.3 Arrakis Native Interface Case Study

As a case study, we modified memcached to make use
of Arrakis/N. In total, 74 lines of code were changed,
with 11 pertaining to the receive side, and 63 to the send
side. On the receive side, the changes involve eliminating
memcached’s receive buffer and working directly with
pointers to packet buffers provided by Arranet, as well
as returning completed buffers to Arranet. The changes
amount to an average performance increase of 9% over
Arrakis/P. On the send side, changes include allocating
a number of send buffers to allow buffering of responses
until fully sent by the NIC, which now must be done
within memcached itself. They also involve the addition
of reference counts to hash table entries and send buffers
to determine when it is safe to reuse buffers and hash

10

 0

 50

 100

 150

 200

 250

 300

GET SETT
h
ro

u
g
h

p
u
t

[K
 t
ra

n
s
a

c
ti
o

n
s
 /

 s
]

Linux
Arrakis/P

Arrakis/P [15us]

Figure 6: Average Redis transaction throughput.

table entries that might otherwise still be processed by the
NIC. We gain an additional average performance increase
of 10% when using the send side API in addition to the
receive side API.

4.4 Redis NoSQL Store

Redis [17] extends the memcached model from a cache
to a persistent NoSQL object store. Our results in Table 2
show that Redis operations—while more laborious than
Memcached—are still dominated by I/O stack overheads.

Redis can be used in the same scenario as Memcached
and we follow an identical experiment setup, using Redis
version 2.8.5. We use the benchmarking tool distributed
with Redis and configure it to execute GET and SET
requests in two separate benchmarks to a range of 65,536
random keys with a value size of 1,024 bytes, persisting
each SET operation individually, and a total concurrency
of 1,600 connections over 16 benchmark clients executing
on the client machines. Redis is single-threaded, so we
investigate only single-core performance.

The Arrakis version of Redis is using TenaciousD. We
changed 109 lines in the application to manage and ex-
change records with the TenaciousD log instead of a file.
We did not eliminate Redis’ marshaling overhead (cf.
Table 2). If we did, we would save another 2.43 µs of
write latency. Due to the fast I/O stacks, Redis’ read per-
formance mirrors that of Memcached and write latency
improves by 63%, while write throughput improves vastly,
by 9x.

To investigate what would happen if we had access
to state-of-the-art storage hardware, we simulate (via a
write-delaying RAM disk) a storage backend with 15 µs
write latency, such as the ioDrive2 [23]. Write throughput
improves by another 1.6x, nearing Linux read throughput.

We conclude that the combination of data-plane net-
work and storage stacks can yield vast benefits in latency
and throughput for both read and write-heavy workloads.
With a view to upcoming hardware improvements, these
benefits will increase further. The tight integration of stor-
age and data structure in TenaciousD allows for a number
of latency-saving techniques that eliminate marshaling
overhead, book-keeping of journals for filesystem meta-
data, and can offset storage allocation overhead. Together,

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 4 6

T
h

ro
u

g
h
p

u
t

[K
 t
ra

n
s
a

c
ti
o
n
s
 /

 s
]

Number of CPU cores

Linux
Linux (SEPOLL)

Arrakis/P

Figure 7: Average HTTP transaction throughput and scalability
of haproxy.

these improvements vastly reduce the software overhead
of durable writes.

4.5 HTTP Load Balancer

To aid scalability of web services, HTTP load balancers
are often deployed to distribute client load over a number
of web servers. A popular HTTP load balancer employed
by many web and cloud services, such as Amazon EC2
and Twitter, is haproxy [3]. In these settings, many con-
nections are constantly opened and closed and the OS
needs to handle the creation and deletion of the associated
socket data structures.

To investigate how performance is impacted when
many connections need to be maintained, we replicate
a cloud deployment with five web servers and one load
balancer. To minimize overhead at the web servers, we
deploy a simple static web page of 1,024 bytes, which
is served out of main memory.We use these same web
server hosts as workload generators, using ApacheBench
version 2.3 to conduct as many concurrent requests for the
web page as possible. We found this setup to yield better
throughput results than other partitions of client/server du-
ties among the cluster nodes. Each request is encapsulated
in its own TCP connection. On the load balancer host, we
deploy haproxy version 1.4.24, which we configure to
distribute incoming load in a round-robin fashion among
the web servers. To conduct the scalability benchmark,
we run multiple copies of the haproxy process on the load
balancing node, each executing on their own port number.
We configure the ApacheBench instances to distribute
their load equally among the available haproxy instances.

Haproxy relies on cookies, which it inserts into the
HTTP stream to remember connection assignments to
backend web servers under possible client re-connects.
This requires it to investigate the HTTP stream at least
once for each new client request. Linux provides an opti-
mization called TCP splicing that allows applications to
forward traffic between two sockets without user-space
involvement. This reduces the overhead of kernel cross-
ings when connections are long-lived. We enable haproxy
to use this feature on Linux when it decides that this is

11

 0

 50

 100

 150

 200

 250

1 2 4

T
h

ro
u

g
h
p

u
t

[K
 t
ra

n
s
a

c
ti
o
n
s
 /

 s
]

Number of CPU cores

Linux
Arrakis/P

Figure 8: Average HTTP transaction throughput and scalability
of the load balancing middlebox. Top y-axis value = 10Gb/s.

beneficial.
Finally, haproxy contains a feature known as “spec-

ulative epoll” (SEPOLL), which uses knowledge about
typical socket operation flows within the Linux kernel
to avoid calls to the epoll interface and optimize perfor-
mance. Since the Arranet implementation differs from
that of the Linux kernel network stack, we were not able
to use this interface on Arrakis, but speculate that this
feature could be ported to Arrakis to yield similar per-
formance benefits. To show the effect of the SEPOLL
feature, we repeat the Linux benchmark both with and
without it and show both results.

In Figure 7, we can see that Arrakis outperforms Linux
in both regular and SEPOLL configurations, by a factor of
2.2x and 2x, respectively. Both systems show equivalent
scalability curves. The slightly less perfect scalability is
due to the additional overhead induced by TCP connec-
tion handling (SYN, ACK and FIN packets) that is not
included in the figure. Note that Arrakis’s performance on
6 CPUs is affected by background activity on Barrelfish.
Unfortunately, we do not own a multi-core machine large
enough to investigate where we hit a scalability limit.

To conclude, connection oriented workloads require a
higher number of system calls for setup (accept and
setsockopt) and teardown (close). In Arrakis, we
can use filters, which require only one control plane in-
teraction to specify which clients and servers may com-
municate with the load balancer service. Further socket
operations are reduced to function calls in the library OS,
which have lower overhead.

4.6 IP-layer Middlebox

IP-layer middleboxes are widespread in wide area net-
works (WANs) today, especially on the Internet. Common
middleboxes perform tasks, such as firewalling, intrusion
detection, network address translation, WAN optimiza-
tion, and load balancing. Due to the complexity of their
task, middleboxes can benefit from the programming and
run-time convenience allowed by the abstraction, safety,
and management capabilities provided by an operating
system.

We implemented a simple user-level load balancing
middlebox, using raw IP sockets [5]. Just like haproxy,
the middlebox balances an incoming TCP workload to a
set of back-end servers. Unlike haproxy, it is operating
completely transparently to and without deep knowledge
of the higher layer protocols. It simply rewrites source and
destination IP addresses and TCP port numbers contained
in the packet headers to forward HTTP connections. It
uses a hash table to remember existing connection as-
signments and understands when a TCP connection is
active. Responses by the back-end web servers are inter-
cepted yet again and forwarded back to the corresponding
clients. This is enough to provide the same load balanc-
ing capabilities as in the haproxy experiment. We repeat
the experiment from §4.5, replacing haproxy with our
middlebox.

The simpler nature of the middlebox can be seen in
the throughput results in Figure 8. Both Linux and Ar-
rakis perform better. Because the middlebox performs
less application-level work than haproxy, performance
factors are largely due to OS-level network packet pro-
cessing and Arrakis’ benefit is thus more prominent, at
2.6x that of Linux. We also see an interesting effect: the
Linux implementation does not scale at all in this config-
uration. The reason for this are the raw IP sockets, which
carry no connection information. Without an indication
of which connections to steer to which socket, each mid-
dlebox instance has to look at each incoming packet to
determine whether it should handle it. This added over-
head outweighs any performance gained via parallelism.
In Arrakis, we can configure the hardware filters to steer
packets based on packet header information and thus scale
until we quickly hit the NIC throughput limit at 2 cores.

We conclude that Arrakis allows us to retain the safety,
abstraction, and management benefits of software devel-
opment at user-level, while vastly improving the perfor-
mance of low level packet operations. Filters provide a
versatile interface to steer packet workloads based on ar-
bitrary information stored in packet headers to effectively
leverage multi-core parallelism, regardless of protocol
specifics.

4.7 Performance Isolation

We show that QoS limits can be enforced in Arrakis, by
simulating a simple multi-tenant scenario with 5 mem-
cached instances pinned to distinct cores, to minimize
processor crosstalk. One tenant has an SLA that allows it
to send up to 100Mb/s. The other tenants are not limited.

We use rate specifiers in Arrakis to set the transmit rate
limit of the VNIC of the limited process. On Linux, we
use queuing disciplines [27] (specifically, HTB [19]) to
rate limit the source port of the equivalent process.

We repeat the experiment from §4.2, plotting the
throughput achieved by each memcached instance, shown

12

 0

 200

 400

 600

 800

 1000

 1200

 1400

Arrakis/P Linux Arrakis/P Linux

T
h
ro

u
g
h
p
u
t
[K

 t
ra

n
s
a
c
ti
o
n
s
 /
 s

]

 No limit 100Mbit/s limit

Figure 9: Memcached transaction throughput over 5 instances
(colors), with and without rate limiting.

in Figure 9. The bottom-most process (barely visible) is
rate-limited to 100Mb/s in the experiment shown on the
right hand side of the figure. All runs remained within
the error bars shown in Figure 5. When rate-limiting, a
bit of the total throughput is lost for both OSes because
clients keep sending packets at the same high rate. These
consume network bandwidth, even when later dropped
due to the rate limit.

We conclude that it is possible to provide the same
kind of QoS enforcement—in this case, rate limiting—in
Arrakis, as in Linux. Thus, we are able to retain the pro-
tection and policing benefits of user-level application exe-
cution, while providing improved network performance.

5 Related Work
SPIN [13] and Exokernel [24] reduced shared kernel com-
ponents to allow each application to have customized op-
erating system management. Nemesis [14] reduces shared
components to provide more performance isolation for
multimedia applications. Arrakis completely eliminates
kernel-level I/O processing, while providing the benefits
of customized OS I/O stacks and performance isolation.

We have previously proposed the idea of using hard-
ware virtualization support to eliminate the OS from fast-
path I/O operations [7]. In this respect, we follow on from
previous work on Dune [12], which used nested paging to
provide support for user-level control over virtual mem-
ory, and Exitless IPIs [25], which presented a technique to
demultiplex hardware interrupts between virtual machines
without mediation from the virtual machine monitor.

Netmap [45] implements fast packet-level I/O by doing
DMAs directly from user-space packet processors. Sends
and receives still require system calls, as the OS needs
to do permission checks on every operation. Through-
put is achieved at the expense of latency, by batching
large numbers of reads and writes. Arrakis, on the other
hand, focuses on low-latency I/O. Concurrently with our
work, mTCP uses Intel’s DPDK interface to implement a
scalable user-level TCP [33]; mTCP focuses on scalable
network stack design, while our focus is on the operat-
ing system API for general client-server applications. We

expect the performance of Arranet and mTCP to be sim-
ilar. OpenOnload [46] is a hybrid user- and kernel-level
network stack. It is completely binary-compatible with
existing Linux applications; to support this, it has to keep
a significant amount of socket state in the kernel and
supports only a traditional socket API. Arrakis, in con-
trast, allows applications to access the network hardware
directly and does not impose API constraints.

Similarly, recent work has focused on reducing the
overheads imposed by traditional filesystems and block
device drivers to persistent memory (PM). DFS [34] and
PMFS [22] are filesystems designed for these devices.
DFS relies on the flash storage layer for functionality
traditionally implemented in the OS, such as block al-
location. PMFS exploits the byte-addressability of PM,
avoiding the block layer. Both DFS and PMFS are im-
plemented as kernel-level filesystems, exposing POSIX
interfaces. They focus on optimizing filesystem and de-
vice driver design for specific technologies, while Arrakis
investigates how to allow applications fast, customized
device access.

Moneta-D [15] is a hardware and software platform for
fast, user-level I/O to solid-state devices. The hardware
and operating system cooperate to track permissions on
hardware extents, while a user-space driver communicates
with the device through a virtual interface. Applications
interact with the system through a traditional file system.
Moneta-D is optimized for large files, since each open
operation requires communication with the OS to check
permissions; Arrakis does not have this issue, since appli-
cations have complete control over their VSAs. Aerie [49]
proposes an architecture in which multiple processes com-
municate with a trusted user-space filesystem service to
modify file metadata and perform lock operations, while
directly accessing the hardware for reads and data-only
writes. Arrakis provides more flexibility than Aerie, since
storage solutions can be integrated tightly with applica-
tions rather than provided in a shared service, allowing
for the development of higher-level abstractions, such as
persistent data structures.

6 Conclusion
In this paper, we described and evaluated Arrakis, a new
operating system designed to remove the kernel from the
I/O data path without compromising process isolation.
Unlike a traditional operating system, which mediates all
I/O operations to enforce process isolation and resource
limits, Arrakis uses device hardware to deliver I/O directly
to a customized user-level library. The Arrakis kernel
operates in the control plane, configuring the hardware to
limit application misbehavior.

To demonstrate the practicality of our approach, we
have implemented Arrakis on commercially available net-
work and storage hardware and used it to benchmark

13

several typical server workloads. We are able to show that
protection and high performance are not contradictory:
end-to-end client read and write latency to the Redis per-
sistent NoSQL store is 2-5x faster and write throughput
9x higher on Arrakis than on a well-tuned Linux imple-
mentation.

References
[1] http://www.barrelfish.org/.

[2] http://www.libmemcached.org/.

[3] http://haproxy.1wt.eu.

[4] Scaling in the linux networking stack. https://
www.kernel.org/doc/Documentation/
networking/scaling.txt.

[5] Linux IPv4 raw sockets, May 2012.
http://man7.org/linux/man-pages/
man7/raw.7.html.

[6] D. Abramson. Intel virtualization technology for
directed I/O. Intel Technology Journal, 10(3):179–
192, 2006.

[7] Redacted for anonymous reviewing.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[9] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management
in server systems. In OSDI, 1999.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In SOSP, 2003.

[11] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS archi-
tecture for scalable multicore systems. In SOSP,
2009.

[12] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei,
D. Mazières, and C. Kozyrakis. Dune: Safe user-
level access to privileged CPU features. In OSDI,
2012.

[13] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, safety and performance in
the SPIN operating system. In SOSP, 1995.

[14] R. Black, P. T. Barham, A. Donnelly, and N. Strat-
ford. Protocol implementation in a vertically struc-
tured operating system. In LCN, 1997.

[15] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user
space access to fast, solid state disks. ASPLOS,
2012.

[16] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Optimistic crash consis-
tency. In SOSP, 2013.

[17] Citrusbyte. Redis. http://redis.io/.

[18] Compaq Computer Corp., Intel Corporation, and Mi-
crosoft Corporation. Virtual Interface Architecture
Specification, version 1.0 edition, December 1997.

[19] M. Devera. HTB Linux queuing discipline manual
– User Guide, May 2002. http://luxik.cdi.
cz/~devik/qos/htb/userg.pdf.

[20] A. Dragojević, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast remote memory. In NSDI,
2014.

[21] P. Druschel, L. Peterson, and B. Davie. Experiences
with a high-speed network adaptor: A software per-
spective. In SIGCOMM, 1994.

[22] S. R. Dulloor, S. Kumar, A. Keshavamurthy,
P. Lantz, D. Reddy, R. Sankaran, and J. Jackson.
System software for persistent memory. In EuroSys,
2014.

[23] Fusion-IO. ioDrive2 and ioDrive2 Duo Multi Level
Cell, 2014. Product Datasheet. http://www.
fusionio.com/load/-media-/2rezss/
docsLibrary/FIO_DS_ioDrive2.pdf.

[24] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.
Briceño, R. Hunt, and T. Pinckney. Fast and flexible
application-level networking on exokernel systems.
TOCS, 20(1):49–83, Feb 2002.

[25] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. ELI: bare-
metal performance for I/O virtualization. In ASP-
LOS, 2012.

[26] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: a new programming interface for scal-
able network I/O. In OSDI, 2012.

[27] B. Hubert. Linux advanced routing & traffic
control HOWTO. http://www.lartc.org/
howto/.

[28] Intel Corporation. Intel 82599 10 GbE Controller
Datasheet, December 2010. Revision 2.6. http:
//www.intel.com/content/dam/www/
public/us/en/documents/datasheets/

14

82599-10-gbe-controller-datasheet.
pdf.

[29] Intel Corporation. Intel Data Plane Development
Kit (Intel DPDK) Programmer’s Guide, Aug 2013.
Reference Number: 326003-003.

[30] Intel Corporation. Intel RAID Controllers
RS3DC080 and RS3DC040, Aug 2013.
Product Brief. http://www.intel.
com/content/dam/www/public/us/
en/documents/product-briefs/
raid-controller-rs3dc-brief.pdf.

[31] Intel Corporation. Intel virtualization technology for
directed I/O architecture specification. Technical Re-
port Order Number: D51397-006, Intel Corporation,
Sep 2013.

[32] Intel Corporation. NVM Express, re-
vision 1.1a edition, Sep 2013. http:
//www.nvmexpress.org/wp-content/
uploads/NVM-Express-1_1a.pdf.

[33] E. Jeong, S. Woo, M. Jamshed, H. J. S. Ihm, D. Han,
and K. Park. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In NSDI, 2014.

[34] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn.
DFS: A file system for virtualized flash storage.
Trans. Storage, 6(3):14:1–14:25, Sep 2010.

[35] P. Kutch. PCI-SIG SR-IOV primer: An introduc-
tion to SR-IOV technology. Intel application note,
321211–002, Jan 2011.

[36] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating sys-
tem to support distributed multimedia applications.
IEEE J.Sel. A. Commun., 14(7):1280–1297, Sep
2006.

[37] LSI Corporation. LSISAS2308 PCI Ex-
press to 8-Port 6Gb/s SAS/SATA Con-
troller, Feb 2010. Product Brief. http:
//www.lsi.com/downloads/Public/
SAS%20ICs/LSI_PB_SAS2308.pdf.

[38] LSI Corporation. LSISAS3008 PCI Ex-
press to 8-Port 12Gb/s SAS/SATA Con-
troller, Feb 2014. Product Brief. http:
//www.lsi.com/downloads/Public/
SAS%20ICs/LSI_PB_SAS3008.pdf.

[39] lwIP. http://savannah.nongnu.org/
projects/lwip/.

[40] D. Mosberger and L. L. Peterson. Making paths
explicit in the Scout operating system. In OSDI,
1996.

[41] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and
Y. Wang. SDF: Software-defined flash for web-scale
internet storage systems. In ASPLOS, 2014.

[42] V. S. Pai, P. Druschel, and W. Zwanepoel. IO-Lite: A
unified I/O buffering and caching system. In OSDI,
1999.

[43] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Mor-
ris. Improving network connection locality on mul-
ticore systems. In EuroSys, 2012.

[44] RDMA Consortium. Architectural specifica-
tions for RDMA over TCP/IP. http://www.
rdmaconsortium.org/.

[45] L. Rizzo. Netmap: A novel framework for fast
packet I/O. In USENIX ATC, 2012.

[46] SolarFlare Communications, Inc. OpenOnload.
http://www.openonload.org/.

[47] Solarflare Communications, Inc. Solarflare
SFN5122F Dual-Port 10GbE Enterprise Server
Adapter, 2010.

[48] A. Trivedi, P. Stuedi, B. Metzler, R. Pletka, B. G.
Fitch, and T. R. Gross. Unified high-performance
I/O: One stack to rule them all. In HotOS, 2013.

[49] H. Volos, S. Nalli, S. Panneerselvam, V. Varadara-
jan, P. Saxena, and M. M. Swift. Aerie: Flexible
file-system interfaces to storage-class memory. In
EuroSys, 2014.

[50] T. von Eicken, A. Basu, V. Buch, and W. Vogels.
U-Net: a user-level network interface for parallel
and distributed computing. In SOSP, 1995.

15

